Tables of accurate STF HF wavefunctions from B to Ca

③ Springer-Verlag 1987

Masahiro Sekiya¹ and Hiroshi Tatewaki²

¹ Department of Chemistry, Hokkaido University, Sapporo, 060 Japan
 ² Research Institute for Catalysis, Hokkaido University, Sapporo, 060 Japan

(Received August 5, revised and accepted October 17, 1986)

Accurate Slater type function (STF) Hartree-Fock (HF) wavefunctions are calculated and tabled from B to Ca. The STF's have a form of $r^n e^{-\gamma r}$ and the powers (n) of r are carefully determined. The total atomic energies agree with those of numerical HF (NHF) within the error of 4×10^{-6} a.u. and 1×10^{-5} a.u. for B to F and for Ne to Ca, respectively. The STF HF basis sets given will be useful to benchmark calculations for the molecular, solid, and atomic electronic states. Applications of the STF HF basis to molecular calculations are given and briefly discussed. Sample calculations are performed on the N₂ and P₂ molecules.

Key words: Atomic Hartree-Fock — Slater-type function (STF)

1. Introduction

The ability of electronic computers improves year by year. Molecular electronic calculations and solid state calculations also attain higher quality. Many of these use Gaussian type functions (GTF's). Recently it has been found that a considerable number of polarization functions must be added to GTF basis sets to obtain reliable SCF molecular wavefunctions. However even though the accuracy of GTF calculations increases, we still worry about where the calculated results converge. Questions arise from the inaccurate behaviour of GTF's near the nucleus and at points far from the nucleus.

Here we use Slater type functions (STF's) and generate near HF wavefunctions by the method of Roothaan and Bagus [1]. We hope that such near HF wavefunctions can be used to provide a benchmark for atomic and molecular electronic calculations, as well as solid state calculations.

2. Previous work

There have appeared many STF SCF wavefunctions [2-9]. Using even-tempered basis sets (1s and 2p STF's) where the two non-linear parameters α and β were variationally determined, Raffenetti [7] has given reasonably correct total energies (TE's) for Li to Ca. Among others, Clementi and Roetti [8] have compiled the atomic SCF wavefunctions from He to Xe. They have calculated the ground, excited, and even ionized states. Their results are often referred as accurate HF. There are, however, small differences between the TE's of numerical HF (NHF) [10, 11] and the analytic expansion results of Clementi and Roetti [8] as will be soon discussed.

Schmidt and Ruedenberg [12] have shown that the true HF limit can be obtained by the analytic expansion method using systematically large even-tempered basis sets. One of the present authors (HT) [9] has analyzed the results of Clenentti and Roetti [8], Bagus et al. [3], and Huzinaga [13, 14] and has found that the three 1s STF's are necessary to get near HF wavefunctions for the second row atoms from Li to Ne.

3. Present work

Raffenetti and Ruedenberg [7], in their work with even tempered STF's, have shown that excellent wavefunctions can be obtained using exponential primitives of the 1s, 2p, 3d type only. In a previous work [9] we have further pursued this approach but without the eventempered exponent constraint.

The present study is an extension of this work.

We have, here, carefully chosen the power(n) of r in STF's, $r^n e^{-\gamma r}$. It is found that the use of 1s and 2p STF's for the second row atoms leads to a considerable TE lowering compared with other calculations. As will be shown, five 1s and five 2p STF's supply almost accurate HF TE's. On the other hand, tests of the set of this type on Cl²P provided negative results. A linear dependence occurred and the efficiency of this type of set is decreased: the use of seven 1s and seven 2p for C1 gives a TE of -459.481970 a.u. which is lower than that of CR by 0.0001 a.u. The use of seven 1s and eight 2p functions gives -459.482010 a.u., while eight 1s and eight 2p lead to slight linear dependence and give almost the same energy of -459.482017 a.u. (The nearest two exponents in 1s STF's are 4.3918 (ζ_5) and 3.5085 (ζ_6) and the overlap integral between the two is 0.9813. The two STF's have rather large amplitude with opposite sign in the HF 2S and 3S orbitals; C_{z5} and $C_{\zeta 6}$ in 2S and 3S are (-2.49, 0.95) and (0.30, -1.93), respectively.) The best set that we found was composed of two 1s, seven 2s and eight 2p STF's. This set gives a TE of -459.482063 a.u., quite close to that of NHF (-459.48207 a.u.). This expansion pattern has been used throughout the third row atoms. Details will be given elsewhere [15].

The TE's calculated by various authors for Li to Ne and Na to Ca are collected in Tables 1–2 for a quick review. The NHF results of Fischer [10] are also shown in these tables for comparison. Tatewaki [9] has found TE of -99.409340 a.u. Tables of accurate STF HF wavefunctions from B to Ca

for F 2 P, using five 1s and four 2p, while the NHF value is -99.409349 a.u. The extra 2p STF added in this work considerably reduces the error, resulting in a TE of -99.409346 a.u. As a whole, the present analytic sets give an error in TE's of less than 4×10^{-6} a.u. for B to Ne (Instead of the result of NHF, we have adopted that of large even-tempered set as 'exact' value for Ne [7]: see Table 1). The error is somewhat larger for Na to Ca, i.e., about 1×10^{-5} a.u. TE's given by Clementi and Roetti and others are reasonably close to those of NHF for the atoms with a smaller nuclear charge except for those of Raffenetti who imposed the even-tempered constraint. For heavy atoms (P-Ca) the difference between the analytic HF of Clementi and Roetti and NHF becomes a little larger. Examples of the orbital energies (ε 's) for fluorine $(2s^22p^5)$ ²P and chlorine $(3s^23p^5)$ ²P are shown in Table 3. Good agreement is observed in the orbital energies of the present HF and NHF of Fischer [10]. The exponents and expansion coefficients for B to CA are summarized in Table 4. The expectation values $\langle r^n \rangle$ for n = -3, -2, -1, 0, 1, and 2 are also shown in this table. There exist close agreement among the NHF values of Fischer [10], the best Raffenetti-Ruedenberg's values [7b], and the present results.

The atomic SCF wavefunctions have been used in molecular SCF calculations on the N_2 and P_2 molecules. Many sets of the polarization functions are added

	-		`	5	
	Li	Be	В	С	
R ^a	7.432720	14.573015	24.529049	37.688598	
CR ^b	7.432726	14.573021	24.529057	37.688612	
BGR°	7.432726	14.573021	24.529058	37.688615	
T ^d	7.432726	14.573019	24.529056	37.688612	
Te	7.432725	14.573020	24.529057	37.688616	
\mathbf{P}^{f}			24.529057	37.688616	
Exact ^g	7.432727	14.573023	24.529061	37.688619	
	Ν	Ο	F	Ne	
R	54.400895	74.809286	99.409204	128.54695	
CR	54.400924	74.809370	99.409300	128.54705	
BGR	54.400926	74.809384	99.409327	128.54707	
Т	54.400926	74.809384	99.409331	128.54707	
T'	54.400930	74.809393	99.409340	128.54709	
Р	54.400931	74.809395	99.409346	128.547094	
Exact	54.400934	74.809398	99.409349	128.547097	

Table 1. Comparison of the total energies (with sign reversed) of B to Ne by various basis sets

^a See [7]; the basis sets are composed of six 1s and four 2p STF's

^b See [8]; the basis sets are composed of two 1s, four 2s, and four 2p STF's

° See [3]; the basis sets are composed of two 1s, two 2s, one 3s, and four 2p STF's

^d See [9]; the basis sets are composed of three 1s, two 2s, and four 2p STF's

^e See [9]; the basis sets are composed of five 1s and four 2p STF's

^f Present work; the basis sets are composed of five 1s and five 2p STF's

^g From Li to F, the exact values are the results of NHF [10], while that for Ne is the result of large even-tempered STF's [7]

	Na	Mg	Al	Si	Р	
R ^a	161.85880	199.61455	241.87663	288.85428	340.71870	
CR ^b	161.85890	199.61461	241.87668	288.85431	340.71869	
Hc	161.85889	199.61461	241.87669	288.85434	340.71876	
\mathbf{P}^{d}	161.85891	199.61462	241.87670	288.85436	340.71878	
NHF ^e	161.85891	199.61463	241.87671	288.85436	340.71878	
	S	Cl	Ar	K	Ca	
R	397.50477	459.48180	526.81702	599.16457	676.75715	
CR	397.50485	459.48187	526.81739	599.16453	676.75803	
Н	397.50487	459.48204	526.81748			
Р	397.50489	459.48206	526.81750	599.16478	676.75817	
NHF	397.50490	459.48207	526.81751	599.16479	676.75818	

Table 2. Comparison of the total energies (with sign reversed) of Na to Ca by various basis sets

^a See [7]; for third row atoms, the basis sets are domposed of nine 1s and six 2p STF's

^b See [8]; the basis sets are composed of one 1s, seven 3s, one 2p, and seven 4p STF's except for Na and Mg, where seven 2p are replaced by four 2p STF's. For K and Ca, they are composed of two 1s, two 2s, three 3s, four 4s, two 2p, and four 3p STF's

^c See [5]; expansion patterns of STF's are the same as ^b

^d Present work; for third row atoms, the basis sets are composed of two 1s, seven 2s. and eight 2p STF's except for Na and Mg where eight 2p are replaced by five 2p STF's. For K and Ca, they are composed of two 1s, two 2s, eight 3s, and eight 2p STF's

^e See [10]

	Fluorine CR ^ª	K ² 2s ² 2p ⁵ 2P BGR ^b	P ^c	NHF ^d
TE	99.409300	99.409327	99.409346	99.409349
£1.	26.38273	26.38265	26.38277	26.38276
E2.	1.57254	1.57245	1.57254	1.57253
ε_{2p}	0.83001	0.72994	0.73002	0.73002
	Chlorine	K ² L ⁸ 3s ² 3p ⁵² P		
	CR ^a	He	$\mathbf{P}^{\mathbf{c}}$	$\mathbf{NHF}^{\mathbf{d}}$
ТЕ	459.48187	459.48204	459.48206	459.58207
ε1.	104.88469	104.88440	104.88441	104.88442
- 18 En-	10.60777	10.60747	10.60748	10.60748
E2.	1.07311	1.07290	1.07291	1.07291
53 En	8.07252	8.07222	8.07223	8.07222
ε _{3p}	0.50652	0.50639	0.50640	0.50640

Table 3. Comparison of the orbital energies (with sign reversed) of F and Cl

^b See [3]

^c Present work

^d See [10]

^e See [5]

^a See [8]

	To	otal Energy	-24. 529057	
Orbital Symmetry	1S	2S		2P
Orbital Energy	-7.69533	-0.49470		-0.30986
Exponent	Coefficients		Exponen	t Coefficients
1s 8.03262 1s 4.47655 1s 2.70048 1s 1.19529 1s 0.99407	0.07181 0.91904 0.01893 -0.00025 0.00041	0.01429 0.07208 0.50042 0.39619 -1.65353	2p 5.8 2p 2.5 2p 1.5 2p 0.9 2p 0.6	2091 0.00723 0711 0.07695 4122 0.32283 4263 0.60077 9869 0.05678
<r** 0=""> <r**-3></r**-3></r**>	1. 00000	1.00000		1.00000 0.77569
<pre><r**-1> <r** 1=""> <r** 2=""></r**></r**></r**-1></pre>	4. 67434 0. 32587 0. 14336	2. 02355 0. 71288 1. 97707 4. 70916		$\begin{array}{c} 0. \ 62989\\ 0. \ 60501\\ 2. \ 20476\\ 6. \ 14607\end{array}$
Rillax	0. 21100	1.52544		1. 28600

B K(2) 2S*2 2P*1 (2P)

Table 4. The STF HF wavefunctions from B to Ca

C K(2) 2S*2 2P*2 (3P)

Total Energy -37.688616

Orbi	tal	Symmetry	1	S	2	S					2P
Orbi	tal	Energy	-11.	32551	-0.	70563				-0	. 43334
Ξx	pone	ent	Coef	ficients	5			Exp	onent	Coeff	icients
1s 1s 1s 1s	9. 5. 3. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	66836 48751 43184 55063 19048 ** 0> **-3> **-2> **-1> ** 1> ** 1> ** 2>	0. 0. 0. 0. 0. 1. 65. 5. 0. 0.	06165 91888 02797 00033 00041 00000 23976 66444 26844 09720 17440	0. 0. 0. -1. 1. 3. 0. 1. 3.	01250 06698 52109 07211 33646 00000 25672 89680 58934 05201 22221	2 2 2 2 2 2 2 2		7.07990 3.04833 1.85359 1.14016 0.80298	0 0 0 0 1 1 1 0 0 0 1 3 3	. 00696 . 11182 . 38038 . 53936 . 03282 . 00000 . 69201 . 89207 . 78350 . 71449 . 74678 . 21124
										-	

N K(2) 2S*2 2P*3 (4S)

Total Energy -54. 400931

Orbi	tal	Symmetry	. 1	S	2	S					2P
Orbi	tal	Energy	-15.	62906	-0.	94532				-0	. 56759
Ex	pone	ent	Coef	ficients				Expor	nent	Coeff	icients
1s 1s 1s 1s 1s	11. 6. 4. 1. 1.	28894 50357 15941 50925 36560	0. 0. 0. -0.	05421 91628 03731 00138 00033	0. 0. -0. -0.	01091 06321 53270 32768 93891	2 2 2 2 2 2	lp 8 lp 8 lp 2 lp 1 lp 0	3. 25307 3. 60392 3. 17162 1. 33358 0. 92006). 00681). 18653). 41100). 49463). 02713
	<r* <r* <r* <r* <r* <r* <r*< td=""><td>** 0> **-3> **-2> **-1> ** 1> ** 2> nax</td><td>1. 89. 6. 0. 0. 0.</td><td>00000 84849 65324 22830 07027 14862</td><td>1. 4. 1. 2. 1.</td><td>00000 75496 07818 33228 14940 02180</td><td></td><td></td><td></td><td>1 3 1 0 1 2 0</td><td>. 00000 . 09990 . 33629 . 95769 . 40963 . 54765 . 98327</td></r*<></r* </r* </r* </r* </r* </r* 	** 0> **-3> **-2> **-1> ** 1> ** 2> nax	1. 89. 6. 0. 0. 0.	00000 84849 65324 22830 07027 14862	1. 4. 1. 2. 1.	00000 75496 07818 33228 14940 02180				1 3 1 0 1 2 0	. 00000 . 09990 . 33629 . 95769 . 40963 . 54765 . 98327

0 K(2) 2S*2 2P*4 (3P)

Total Energy -74.809395

Orbi	tal	Symmetry	1S	2S			2P
Orbi	tal	Energy	-20. 66866	-1.24432			-0.63191
Ex	pone	ent	Coefficients		Exp	onent	Coefficients
1s 1s 1s 1s	12. 7. 4. 1. 1.	89105 51818 86264 91655 56389 ** 0> **-3> **-2> **-1> ** 1> ** 2> max	0. 04872 0. 91472. 0. 04380 0. 00086 0. 00043 1. 00000 118. 39021 7. 64217 0. 19859 0. 05315 0. 12949	0.00964 0.06129 0.55082 -0.31349 -0.96360 1.00000 6.59284 1.26527 1.14196 1.58116 0.87554	2p 2p 2p 2p	9. 53550 4. 18065 2. 51031 1. 50781 1. 08528	$\begin{array}{c} 0.\ 00602\\ 0.\ 15685\\ 0.\ 40778\\ 0.\ 45175\\ 0.\ 06606\\ \hline 1.\ 00000\\ 4.\ 97438\\ 1.\ 81872\\ 1.\ 11111\\ 1.\ 23220\\ 1.\ 97497\\ 0.\ 83261\\ \end{array}$

F K(2) 2S*2 2P*5 (2P)

Total Energy -99. 409346

Orbi	tal	Symmetry	1	S	2	S					2P
Orbi	tal	Energy	-26.	38277	-1.	57254				-0	. 73002
Ex	pone	ent	Coef	ficients]	Expor	nent	Coeff	icients
1s 1s 1s 1s 1s	14. 8. 5. 2. 1.	50029 53821 57342 17914 74367	0. 0. 0. 0.	04402 91232 05054 00090 00055	0. 0. -0. -0.	00847 05962 56052 42942 85172	2) 2) 2) 2) 2) 2)	p 10 p 4 p 2 p 1 p 1). 72879 4. 76849 2. 83521 1. 67212 1. 17787). 00561). 16970). 41836). 43530). 06614
		** 0> **-3> **-2> **-1> ** 1> ** 2>	1. 150. 8. 0. 0.	00000 84325 63036 17575 04161	1. 8. 1. 1. 1.	00000 69848 44975 00109 21651				1 7 2 1 1 1	. 00000 7. 54546 2. 39477 . 27167 . 08478 . 54352
	Rı	lax	0,	11472	0.	76699				C	0.71982

Ne K(2) 2S*2 2P*6 (1S)

Total Energy -128.54709

Orbi	tal	Symmetry	1	IS	2	2S			2P	
Orbi	tal	Energy	-32.	77242	-1.	93038			-0.85	040
Ex	pone	ent	Coef	ficients			B	xponent	Coeffici	ents
1s 1s 1s 1s	16. 9. 2. 1. <r* <r* <r* <r* <r* <r* <r*< th=""><th>02696 55386 28932 44327 92513 **-0> **-3> **-2> **-1> ** 1> ** 1> ** 2> nax</th><th>0. 0. 0. 0. 1. 1. 187. 9. 0. 0.</th><th>04119 90946 05586 00120 00048 00000 20677 61805 15763 03347 10297</th><th>0. 0. -0. -0. 1. 11. 1. 0. 0.</th><th>00768 05772 56648 49266 78978 00000 07259 63255 89211 96704 68291</th><th>2p 2p 2p 2p 2p</th><th>11. 71898 5. 32678 3. 15883 1. 87553 1. 33620</th><th>$\begin{array}{c} 0.\ 00\\ 0.\ 18\\ 0.\ 41\\ 0.\ 40\\ 0.\ 08\\ 1.\ 00\\ 10.\ 90\\ 3.\ 05\\ 1.\ 43\\ 0.\ 96\\ 1.\ 22\\ 0.\ 63\end{array}$</th><th>569 193 875 602 656 000 630 884 535 527 845 396</th></r*<></r* </r* </r* </r* </r* </r* 	02696 55386 28932 44327 92513 **-0> **-3> **-2> **-1> ** 1> ** 1> ** 2> nax	0. 0. 0. 0. 1. 1. 187. 9. 0. 0.	04119 90946 05586 00120 00048 00000 20677 61805 15763 03347 10297	0. 0. -0. -0. 1. 11. 1. 0. 0.	00768 05772 56648 49266 78978 00000 07259 63255 89211 96704 68291	2p 2p 2p 2p 2p	11. 71898 5. 32678 3. 15883 1. 87553 1. 33620	$\begin{array}{c} 0.\ 00\\ 0.\ 18\\ 0.\ 41\\ 0.\ 40\\ 0.\ 08\\ 1.\ 00\\ 10.\ 90\\ 3.\ 05\\ 1.\ 43\\ 0.\ 96\\ 1.\ 22\\ 0.\ 63\end{array}$	569 193 875 602 656 000 630 884 535 527 845 396

Na K(2) L(8) 3S*1 (2S)

Total Energy -161.85891

Orbital	Symmetry	15	2S	35
Orbital	Energy	-40. 47850	-2.79702	-0.18210
Expon	ent	Coefficients		
1s 16. 1s 10. 2s 8. 2s 6. 2s 3. 2s 2. 2s 1. 2s 1. 2s 0. 2s 0. 2s 0.	21190 24827 71557 46001 87388 69135 48361 69128 58975	0. 06724 0. 93757 -0. 01490 0. 02068 -0. 00497 0. 00328 -0. 00081 0. 00068 -0. 00047	0. 01151 0. 23881 0. 15601 -0. 16162 -0. 55239 -0. 46349 0. 00024 -0. 00102 0. 00044	0.00227 0.03484 0.02863 -0.03148 -0.07603 -0.09947 -0.12017 0.55487 0.54094
<r; <r; <r; <r; <r; R;</r; </r; </r; </r; </r; 	** 0> **-2> **-1> ** 1> ** 2> max	$\begin{array}{c} 1.\ 00000\\ 227.\ 53589\\ 10.\ 60738\\ 0.\ 14286\\ 0.\ 02748\\ 0.\ 09340 \end{array}$	$\begin{array}{c} 1. \ 00000\\ 14. \ 45473\\ 1. \ 86734\\ 0. \ 77907\\ 0. \ 73150\\ 0. \ 60774 \end{array}$	$\begin{array}{c} 1.\ 00000\\ 0.\ 39849\\ 0.\ 30140\\ 4.\ 20874\\ 20.\ 70611\\ 3.\ 39338\end{array}$

Orbital Symmetry 2P

Orbit	al	Energy		-1.51814
Exi	oone	ent	(Coefficients
2p 2p	12. 5.	54752 77218		0.00661

2p 2p 2p	$\begin{array}{c} 3. \ 34436 \\ 2. \ 13398 \\ 1. \ 13450 \end{array}$	0.46916 0.37549 0.00506
	<r** 0=""> <r**-3> <r**-2> <r**-1></r**-1></r**-2></r**-3></r**>	$\begin{array}{c} 1.\ 00000\\ 17.\ 00503\\ 4.\ 18770\\ 1.\ 69660 \end{array}$
	<r** 1=""> <r** 1=""> <r** 2=""> Rmax</r**></r**></r**>	0. 79849 0. 82214 0. 54899

Mg K(2) L(8) 3S*2 (1S)

Total Energy -199.61462

Orbital	Symmetry	1 S	25	35
Orbital	Energy	-49. 03173	-3.76772	-0.25305
Expon	ənt	Coefficients		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10400 37501 80673 96475 21956 03050 87539 98058 71506	0. 05259 0. 94085 0. 00262 0. 01562 -0. 00502 0. 00391 -0. 00117 0. 00045 -0. 00020	-0. 00941 -0. 24560 -0. 14598 0. 14110 0. 62098 0. 40314 -0. 00916 0. 00274 -0. 00114	$\begin{array}{c} -0.\ 00300\\ -0.\ 04498\\ -0.\ 03774\\ 0.\ 04515\\ 0.\ 07241\\ 0.\ 18780\\ 0.\ 09784\\ -0.\ 57664\\ -0.\ 55072\end{array}$
<r* <r* <r* <r* <r*< td=""><td>** 0> **-2> **-1> ** 1> ** 2> Max</td><td>$\begin{array}{c} 1.\ 00000\\ 271.\ 85231\\ 11.\ 59795\\ 0.\ 13059\\ 0.\ 02296\\ 0.\ 08546 \end{array}$</td><td>1.00000 18.38414 2.10782 0.69034 0.57109 0.54641</td><td>1. 00000 0. 78878 0. 39939 3. 25302 12. 42160 2. 58872</td></r*<></r* </r* </r* </r* 	** 0> **-2> **-1> ** 1> ** 2> Max	$\begin{array}{c} 1.\ 00000\\ 271.\ 85231\\ 11.\ 59795\\ 0.\ 13059\\ 0.\ 02296\\ 0.\ 08546 \end{array}$	1.00000 18.38414 2.10782 0.69034 0.57109 0.54641	1. 00000 0. 78878 0. 39939 3. 25302 12. 42160 2. 58872

Orbital Symmetry 2P

Orbital Energy	-2. 28222
Exponent	Coefficients
2p14. 267152p6. 462202p3. 690762p2. 481622p1. 30593	0.00546 0.22660 0.53108 0.30134 0.00377
<r** 0=""> <r**-3> <r**-2> <r**-1> <r** 1=""> <r** 2=""> Rmax</r**></r**></r**-1></r**-2></r**-3></r**>	$\begin{array}{c} 1. \ 00000\\ 24. \ 92220\\ 5. \ 46984\\ 1. \ 95169\\ 0. \ 68500\\ 0. \ 59770\\ 0. \ 48374 \end{array}$

K(2) L(8) 3S*2 3P*1 (2P) A1

Total Energy -241.87670

Orbital	Symmetry	1S	2S	3S
Orbital	Energy	-58. 50101	-4. 91066	-0. 39341
Expone	ent	Coefficients		
1s 20. 1s 12. 2s 10. 2s 7. 2s 4. 2s 3. 2s 2. 2s 1. 2s 0. 2s 0.	37927 56054 86027 43594 54139 26954 75898 59978 97370 ** 0>	0. 03711 0. 94236 0. 02221 0. 01156 -0. 00580 0. 00903 -0. 00543 0. 00050 -0. 00009 1. 00000	-0.00691 -0.25066 -0.14486 0.13250 0.71286 0.36011 -0.06041 -0.00255 -0.00016 1.00000	0. 00168 0. 05770 0. 03653 -0. 03047 -0. 18700 0. 11444 -0. 45667 0. 36408 0. 87617 1. 00000
<r* <r* <r* <r* R*</r* </r* </r* </r* 	**-2> **-1> ** 1> ** 2> nax	320. 13921 12. 58925 0. 12026 0. 01946 0. 07876	22. 79981 2. 34901 0. 62003 0. 45890 0. 49607	1.35956 0.50679 2.59909 7.88772 2.09779

Orbi	tal	Symmetry	2P	3P
Orbi	tal	Energy	-3.21829	-0. 20995
Ex	pone	ent	Coefficients	
2p 2p 2p 2p 2p 2p 2p 2p	16. 7. 2. 2. 1. 1. 0.	46789 46240 42178 93569 56805 47973 02442 69302	0.00371 0.18470 0.49825 0.45558 -0.09118 0.00984 -0.00183 0.00054	-0. 00051 -0. 03369 -0. 09739 0. 07579 -0. 24234 0. 01593 0. 30484 0. 77163
		** 0> **-3> **-2> **-1> ** 1> ** 2> max	1.00000 34.94033 6.91587 2.20511 0.60054 0.45536 0.43229	$\begin{array}{c} 1.\ 00000\\ 1.\ 08801\\ 0.\ 31055\\ 0.\ 37929\\ 3.\ 43370\\ 14.\ 00317\\ 2.\ 68609 \end{array}$

Si K(2) L(8) 3S*2 3P*2 (3P)

Total Energy -288.85436

Orbital	Symmetry	1S	2S	3S
Orbital	Energy	-68.81245	-6.15654	-0.53984
Expone	ent	Coefficients		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83699 56225 77293 25260 00111 82025 19108 61825 10992	0.03578 0.94378 0.02095 0.01260 -0.00735 0.01016 -0.00510 0.00039 -0.00012	$\begin{array}{c} -0.\ 00667\\ -0.\ 25708\\ -0.\ 14819\\ 0.\ 11482\\ 0.\ 72784\\ 0.\ 30865\\ -0.\ 00405\\ 0.\ 00075\\ 0.\ 00022 \end{array}$	$\begin{array}{c} 0.\ 00226\\ 0.\ 06474\\ 0.\ 04498\\ -0.\ 03982\\ -0.\ 14155\\ -0.\ 09189\\ -0.\ 29481\\ 0.\ 51613\\ 0.\ 69766\end{array}$
<r: <r: <r: <r: <r: R: R:</r: </r: </r: </r: </r: 	** 0> **-2> **-1> ** 1> ** 2> max	1.00000 372.39206 13.58115 0.11143 0.01670 0.07304	1. 00000 27. 69355 2. 59040 0. 56294 0. 37726 0. 45410	1. 00000 1. 99823 0. 60323 2. 20708 5. 67612 1. 79826
Orbital	Symmetry	2P	ЗP	
Orbital	Energy	-4.25605	-0.29711	
Expon	ent	Coefficients		
2p 17. 2p 8. 2p 4. 2p 3. 2p 3. 2p 1. 2p 1. 2p 1. 2p 0.	94393 12062 77793 34833 04173 75161 07563 80782	0.00342 0.18893 0.54403 0.35036 -0.03770 0.00330 0.00087 -0.00006	-0. 00055 -0. 04061 -0. 13269 0. 27667 -0. 48620 0. 12359 0. 55367 0. 46776	
<r <r <r <r <r <r R R</r </r </r </r </r </r 	** 0> **-3> **-2> **-1> ** 1> ** 2> max	$\begin{array}{c} 1.\ 00000\\ 47.\ 27047\\ 8.\ 52035\\ 2.\ 45638\\ 0.\ 53541\\ 0.\ 35968\\ 0.\ 39064 \end{array}$	$\begin{array}{c} 1.\ 00000\\ 2.\ 05362\\ 0.\ 50119\\ 0.\ 47803\\ 2.\ 75222\\ 8.\ 98088\\ 2.\ 16974 \end{array}$	

Ρ K(2) L(8) 3S*2 3P*3 (4S)

Total Energy -340.71878

Orbital Sy	vmmetry	1S	2S	35
Orbital Er	nergy -7	9.96972	-7. 51110	-0.69642
Exponent	Co	efficients		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8241 9718 9904 6738 6637 -1 6632 1374 -1 750 1484 -1	0. 03427 0. 94157 0. 02636 0. 01122 0. 00572 0. 00817 0. 00497 0. 00059 0. 00019	-0. 00662 -0. 26111 -0. 14133 0. 10509 0. 88097 0. 17916 -0. 02930 0. 00212 -0. 00003	$\begin{array}{c} 0. \ 00254\\ 0. \ 07031\\ 0. \ 04651\\ -0. \ 04333\\ -0. \ 14079\\ -0. \ 50362\\ 0. \ 12588\\ 0. \ 63068\\ 0. \ 55661 \end{array}$
<r** <r**- <r**- <r** <r** R**</r** </r** </r**- </r**- </r** 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.00000 3.61611 4.57355 5.10380 5.01449 5.06811	1.00000 33.05937 2.83171 0.51566 0.31592 0.41865	1. 00000 2. 71320 0. 69473 1. 93269 4. 34719 1. 58502
Orbital Sy	mmetry	2P	3P	
Orbital En	ergy -	5. 40096	-0.39171	
Exponent	Coe	efficients		
2p 19.20 2p 8.77 2p 5.08 2p 3.30 2p 3.13 2p 1.82 2p 1.11 2p 0.84	061 () 890 () 157 () 529 () 622 -() 115 () 523 -() 686 -()). 00327). 19168). 64829). 49130). 29106). 00449). 00004). 00000	-0. 00050 -0. 04716 -0. 14527 0. 21645 -0. 47906 0. 30311 0. 75586 0. 13610	
<r** <r**- <r**- <r** <r** <r** Rmax</r** </r** </r** </r**- </r**- </r** 	0> $3>$ $622>$ $101>$ $22>$ $101>$ $22>$ 0	1. 00000 2. 14771 0. 28402 2. 70627 0. 48340 0. 29180 0. 35633	1.00000 3.30974 0.71574 0.57015 2.32272 6.38968 1.84332	

K(2) L(8) 3S*2 3P*4 (3P) S

Total Energy -397.50489

Orbital Symmetry	1S	2S	35
Orbital Energy	-92.00445	-9.00429	-0, 87953
Exponent	Coefficients		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0. 03092 0. 94135 0. 03006 0. 01014 -0. 00257 0. 00334 -0. 00206 0. 00054 -0. 00020 1. 00000 488. 81607 15. 56645 0. 09715	-0. 00655 -0. 26407 -0. 14451 0. 07500 0. 93985 0. 14164 -0. 02214 0. 00406 -0. 00057 1. 00000 38. 90285 3. 07320 0. 47577	$\begin{array}{c} 0. \ 00238\\ 0. \ 07570\\ 0. \ 04862\\ -0. \ 02982\\ -0. \ 18961\\ -0. \ 59582\\ 0. \ 31662\\ 0. \ 71276\\ 0. \ 39351\\ 1. \ 00000\\ 3. \ 53495\\ 0. \ 78610\\ 1. \ 72072\end{array}$
<r** 2=""> Rmax</r**>	0.01269 0.06378	0.26853 0.38828	$\begin{array}{c} 3. \ 44321 \\ 1. \ 42033 \end{array}$
Orbital Symmetry	2P	ЗP	
Orbital Energy	-6.68251	-0.43737	
Exponent	Coefficients		
2p 20. 13311 2p 9. 40449 2p 5. 40460 2p 3. 08231 2p 2. 83402 2p 1. 57209 2p 1. 25865 2p 1. 00074	0.00336 0.19531 0.73186 0.34713 -0.24522 0.02373 -0.01565 0.00404	0.00052 0.05181 0.16179 1.00069 -0.91805 -0.36813 -0.32666 -0.33579	

X	ponent	Coefficients	
	20. 13311	0. 00336	0.00052
	9. 40449	0.19531	0.05181
	5.40460	0.73186	0.16179
	3.08231	0.34713	1.00069
	2.83402	-0.24522	-0.91805
Ċ.	1.57209	0.02373	-0.36813
	1.25865	-0.01565	-0.32666
	1.00074	0.00404	-0.33579
	<r** 0=""></r**>	1. 00000	1.00000
	<r**-3></r**-3>	79.77736	4.83797
	<r**-2></r**-2>	12.20277	0.94190
	<r**-1></r**-1>	2.95445	0.65067
	<r** 1=""></r**>	0.44104	2.06072
	<r** 2=""></r**>	0.24209	5.06526
	Rmax	0.32760	1.61500

C1 K(2) L(8) 3S*2 3P*5 (2P)

Total Energy -459.48206

Orbital Symme	etry 1S	2S	35
Orbital Energ	gy -104.88441	-10.60748	-1.07291
Exponent	Coefficien	ts	
1s 25.5571 1s 16.5760 2s 15.0600 2s 9.6706 2s 6.3082 2s 4.5832 2s 3.1519 2s 1.9157 2s 1.4116 <r** 0=""> <r**-2> <r**-1> <r** 1=""> <r** 2=""></r**></r**></r**-1></r**-2></r**>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.\ 00892\\ -0.\ 26646\\ -0.\ 12970\\ 0.\ 04291\\ 0.\ 91874\\ 0.\ 16437\\ -0.\ 00604\\ 0.\ 00324\\ -0.\ 00035\\ \hline 1.\ 00000\\ 45.\ 21102\\ 3.\ 31440\\ 0.\ 44171\\ 0.\ 23119\\ 0.\ 00001\\ 0.\ 00000\\ 0.\ 0.\ 0000\\ 0.\ 00000\\ 0.\ 00000\\ 0.\ 00000\\ 0.\ 00000\\ 0.\ 00000\\ 0.\ 0000\\ 0.\ 0000\\ 0.\ 00000\\ 0.\ 00000\\ 0.\ 00000\\ 0.\ 000\\ 0.\ 000\ 0.\ 000\\ 0.\ 000\ $	$\begin{array}{c} -0.\ 00360\\ -0.\ 07890\\ -0.\ 04676\\ 0.\ 02823\\ 0.\ 13216\\ 0.\ 59248\\ -0.\ 25406\\ -0.\ 82723\\ -0.\ 26897\\ 1.\ 00000\\ 4.\ 43497\\ 0.\ 87488\\ 1.\ 55563\\ 2.\ 81299\\ 1.\ 00006\\ 4.\ 97488\\ 1.\ 55563\\ 2.\ 81299\\ 1.\ 00006\\ 1.\ 90006$
Rmax	0. 05997	0. 30203	1, 20005
Orbital Symm	etry 2P	3P	
Orbital Ener	gy -8.07223	-0. 50640	

Exponent		Coefficients	
2p 2p 2p 2p 2p 2p 2p	$\begin{array}{c} 19. \ 52090\\ 9. \ 90053\\ 5. \ 81077\\ 3. \ 70603\\ 3. \ 08709\\ 1. \ 67537\\ 1. \ 14799\\ 1. \ 07997\end{array}$	$\begin{array}{c} 0.\ 00489\\ 0.\ 20176\\ 0.\ 73913\\ 0.\ 11590\\ -0.\ 02235\\ 0.\ 00129\\ 0.\ 00322\\ -0.\ 00203 \end{array}$	0.00084 0.05721 0.15724 0.52911 -0.43923 -0.57845 -0.34850 -0.10325
-	<pre><r** 0=""> <r**-3> <r**-2> <r**-1> <r** 1=""> <r** 2=""> <r** 2=""> </r**></r**></r**></r**-1></r**-2></r**-3></r**></pre> <pre>CR** 2</pre>	$\begin{array}{c} 1.\ 00000\\ 100.\ 38885\\ 14.\ 27777\\ 3.\ 20154\\ 0.\ 40572\\ 0.\ 20433\\ 0.\ 30322 \end{array}$	1. 00000 6. 76572 1. 20110 0. 73329 1. 84203 4. 05923 1. 43918

Ar K(2) L(8) 3S*2 3P*6 (1S)

Total Energy -526.81750

Orbital	Symmetry	1S	2S	35
Orbital	Energy	-118.61035	-12. 32215	-1.27735
Expon	ent	Coefficients		
1s 27. 1s 17. 2s 16. 2s 11. 2s 6. 2s 3. 2s 2. 2s 1. 2s 3. 2s 2. 2s 1. <r:< td=""> <r:< td=""></r:<></r:<></r:<></r:<></r:<></r:<></r:<></r:<></r:<></r:<></r:<></r:<></r:<></r:<>	80172 76447 12769 31732 80847 88518 22083 02452 51635 *** 0> **-2> ***-1> *** 1> ** 1>	$\begin{array}{c} 0. \ 02889\\ 0. \ 93772\\ 0. \ 03485\\ 0. \ 01149\\ -0. \ 00267\\ 0. \ 00242\\ -0. \ 00114\\ 0. \ 00045\\ -0. \ 00017\\ \hline 1. \ 00000\\ 621. \ 13444\\ 17. \ 55323\\ 0. \ 08610\\ 0. \ 00996 \end{array}$	$\begin{array}{c} -0.\ 00749\\ -0.\ 26770\\ -0.\ 13276\\ 0.\ 01489\\ 0.\ 95419\\ 0.\ 15289\\ -0.\ 00390\\ 0.\ 00307\\ -0.\ 00025\\ 1.\ 00000\\ 51.\ 98402\\ 3.\ 55532\\ 0.\ 41228\\ 0.\ 20123\\ \end{array}$	$\begin{array}{c} -0. \ 00281\\ -0. \ 08275\\ -0. \ 04756\\ 0. \ 01068\\ 0. \ 17715\\ 0. \ 59920\\ -0. \ 34863\\ -0. \ 81654\\ -0. \ 20941\\ \hline 1. \ 00000\\ 5. \ 41487\\ 0. \ 96198\\ 1. \ 42217\\ 2. \ 35043\end{array}$
Rı	nax	0.05659	0. 33924	1. 18259
Orbital	Symmetry	2P	3P	
Orbital	Energy	-9.57147	-0.59102	
Expon	ent	Coefficients		
2p 20. 2p 10. 2p 6. 2p 4. 2p 3. 2p 1. 2p 1. 2p 1. 2p 1. 2p 1.	12646 55722 27763 21625 47821 88774 33207 21882	0.00529 0.19682 0.74812 0.08215 0.00726 -0.00461 0.00863 -0.00569	0.00091 0.05830 0.15103 0.52214 -0.40381 -0.58652 -0.13235 -0.32803	

р	1.88774	-0.00461	-0. 58652
р	1.33207	0.00863	-0.13235
р	1.21882	-0.00569	-0.32803
	<r** 0=""></r**>	1.00000	1.00000
	<r**-3></r**-3>	124.36739	8.97090
	<r**-2></r**-2>	16. 52544	1.47359
	<r**-1></r**-1>	3. 44999	0.81407
	<r** 1=""></r**>	0.37533	1.66296
	<r** 2=""></r**>	0.17434	3. 31084
	Rmax	0.28215	1.29971

K K(2) L(8) 3S*2 3P*6 4S*1 (2S)

Total Energy -599.16478

Orbital Symme	try 1S	25	3S	4S
Orbital Energ	y -133.53303	-14. 48995	-1.74878	-0.14747
Exponent	Coefficient	ts		
1s 28. 79450 1s 18. 64349 2s 17. 24525 2s 10. 24779 3s 9. 64305 3s 7. 51731 3s 4. 12168 3s 3. 34146 3s 2. 33470 3s 1. 07762 3s 0. 50895	$\begin{array}{c} 0. \ 03270\\ 0. \ 94123\\ 0. \ 02481\\ 0. \ 01757\\ -0. \ 00983\\ 0. \ 00413\\ -0. \ 00185\\ 0. \ 00145\\ -0. \ 000145\\ -0. \ 00008\\ -0. \ 00008\\ -0. \ 00007\\ 0. \ 00003\\ \end{array}$	-0. 00831 -0. 27250 -0. 12046 0. 42289 0. 28686 0. 44395 0. 03820 -0. 02015 0. 00473 -0. 00079 0. 00062 -0. 00024	-0. 00418 -0. 08704 -0. 05023 0. 16730 0. 05771 0. 29679 -0. 14078 -0. 52799 -0. 47920 -0. 0381 0. 00089 -0. 00043	-0. 00126 -0. 01595 -0. 01175 0. 03663 0. 00165 0. 07209 -0. 06540 -0. 06643 -0. 15356 0. 08212 0. 80550 0. 17178
<r** 0=""> <r**-2> <r**-1> <r** 1=""> <r** 2=""> Rmax</r**></r**></r**-1></r**-2></r**>	$\begin{array}{c} 1. \ 00000 \\ 693. \ 27683 \\ 18. \ 54736 \\ 0. \ 08147 \\ 0. \ 00891 \\ 0. \ 05357 \end{array}$	$\begin{array}{c} 1. \ 00000\\ 59. \ 26679\\ 3. \ 79770\\ 0. \ 38639\\ 0. \ 17659\\ 0. \ 31895\end{array}$	$\begin{array}{c} 1. \ 00000\\ 6. \ 81864\\ 1. \ 07486\\ 1. \ 27706\\ 1. \ 88348\\ 1. \ 08177\end{array}$	1. 00000 0. 29540 0. 23659 5. 24384 31. 55105 4. 34722
Orbital Symme	try 2P	ЗP		
Orbital Energ	y -11.51928	-0. 95442		
Exponent	Coefficient	ts		
2p 24. 65683 2p 11. 72499 2p 6. 89687 2p 3. 75438 2p 2. 91836 2p 1. 93217 2p 1. 31324	$\begin{array}{c} 0. \ 00240 \\ 0. \ 16616 \\ 0. \ 76145 \\ 0. \ 13810 \\ -0. \ 03063 \\ -0. \ 00396 \\ 0. \ 00264 \\ -0. \ 00054 \end{array}$	0.00039 0.05204 0.18437 0.75178 -0.69067 0.05452 -0.88048 -0.15348		
<pre><r** 0=""> <r**-3> <r**-2> <r**-1> <r** 1=""> <r** 2=""> <r** 2=""> </r**></r**></r**></r**-1></r**-2></r**-3></r**></pre>	$\begin{array}{c} 1.\ 00000\\ 151.\ 80954\\ 18.\ 92678\\ 3.\ 69703\\ 0.\ 34943\\ 0.\ 15080\\ 0.\ 26380\end{array}$	$\begin{array}{c} 1.\ 00000\\ 12.\ 95203\\ 1.\ 94645\\ 0.\ 93901\\ 1.\ 43685\\ 2.\ 44065\\ 1.\ 16218 \end{array}$		

Ca K(2) L(8) 3S*2 3P*6 4S*2 (1S)

Total Energy -676.75817

Orbital	Symmetry	1S	2S	3S	4S
Orbital 1	Energy	-149.36372	-16. 82273	-2.24537	-0.19553
Expone	nt	Coefficients			
1s 29. 1s 19. 2s 18. 2s 18. 3s 10. 3s 10. 3s 8. 3s 3. 3s 3. 3s 2. 3s 3. 3s 1. 3s 0. 3s 0. 3s 0.	61078 42510 21865 82411 29046 01725 53259 32037 46463 12279 75142 51054	$\begin{array}{c} 0. \ 03818\\ 0. \ 94864\\ 0. \ 00764\\ 0. \ 02151\\ -0. \ 01276\\ 0. \ 00518\\ -0. \ 00181\\ 0. \ 00141\\ -0. \ 00056\\ 0. \ 00011\\ -0. \ 00008\\ 0. \ 00002\\ \end{array}$	$\begin{array}{c} -0.\ 00956\\ -0.\ 27828\\ -0.\ 11396\\ 0.\ 41816\\ 0.\ 28680\\ 0.\ 44664\\ 0.\ 02992\\ -0.\ 01192\\ 0.\ 00445\\ -0.\ 00069\\ 0.\ 00049\\ -0.\ 00015 \end{array}$	$\begin{array}{c} 0. \ 00540\\ 0. \ 09203\\ 0. \ 05220\\ -0. \ 17726\\ -0. \ 05120\\ 0. \ 33082\\ 0. \ 21732\\ 0. \ 66074\\ 0. \ 28550\\ -0. \ 00089\\ 0. \ 00075\\ -0. \ 00025 \end{array}$	$\begin{array}{c} -0, \ 00162\\ -0, \ 02136\\ -0, \ 01397\\ 0, \ 04565\\ 0, \ 00473\\ 0, \ 09355\\ -0, \ 08144\\ -0, \ 13372\\ -0, \ 17356\\ 0, \ 44599\\ 0, \ 64251\\ 0, \ 01768\end{array}$
<r*: <r*: <r*: <r*: <r*: <r*: Rm:</r*: </r*: </r*: </r*: </r*: </r*: 	* 0> *-2> *-1> * 1> * 2> ax	1.00000 769.40318 19.54194 0.07730 0.00802 0.05086	$\begin{array}{c} 1.\ 00000\\ 67.\ 04739\\ 4.\ 04086\\ 0.\ 36350\\ 0.\ 15617\\ 0.\ 30092 \end{array}$	1.00000 8.40002 1.18877 1.15942 1.54601 0.99631	$\begin{array}{c} 1. \ 00000\\ 0. \ 53514\\ 0. \ 29974\\ 4. \ 21843\\ 20. \ 45286\\ 3. \ 47540 \end{array}$
Orbital S	Symmetry	2P	3P		
Orbital H	Energy	-13. 62926	-1.34070		
Exponer	nt	Coefficients			
2p 25.1 2p 12.3 2p 7.3 2p 5.2 2p 4.7 2p 2.4 2p 2.1 2p 1.3 2p 1.3 2p 4.8*** <r*** <r*** <r*** <r**< td=""><td>17785 37123 33368 21639 74252 39163 30061 30881 \$<0> \$<-3> \$<-2> \$<-1> \$<1> \$<1> \$<2> \$<-1> \$<1> \$<2></td><td>0. 00262 0. 16485 0. 78177 -0. 02475 0. 11802 -0. 01302 0. 00464 -0. 00061 1. 00000 183. 00450 21. 49123 3. 94409 0. 32687 0. 18173 0. 94700</td><td>$\begin{array}{c} -0.\ 00042\\ -0.\ 05607\\ -0.\ 16884\\ -0.\ 66092\\ 0.\ 37372\\ 0.\ 18820\\ 0.\ 91891\\ 0.\ 06087\\ 1.\ 00000\\ 17.\ 73475\\ 2.\ 46233\\ 1.\ 05881\\ 1.\ 27455\\ 1.\ 90806\\$</td><td></td><td></td></r**<></r*** </r*** </r*** 	17785 37123 33368 21639 74252 39163 30061 30881 \$<0> \$<-3> \$<-2> \$<-1> \$<1> \$<1> \$<2> \$<-1> \$<1> \$<2>	0. 00262 0. 16485 0. 78177 -0. 02475 0. 11802 -0. 01302 0. 00464 -0. 00061 1. 00000 183. 00450 21. 49123 3. 94409 0. 32687 0. 18173 0. 94700	$\begin{array}{c} -0.\ 00042\\ -0.\ 05607\\ -0.\ 16884\\ -0.\ 66092\\ 0.\ 37372\\ 0.\ 18820\\ 0.\ 91891\\ 0.\ 06087\\ 1.\ 00000\\ 17.\ 73475\\ 2.\ 46233\\ 1.\ 05881\\ 1.\ 27455\\ 1.\ 90806\\$		
Rma	ix	0. 24770	1. 05295		

in order to see the convergence of TE. Here we only summarize the results of the largest basis set;

1) TE for N₂ at R = 2.068 a.u. (experimental R_e) given by atomic STF SCF set+five 3d, five 4f, and one 5g is -108.9937 a.u. which is lower than that of Cade et al. (-108.9928 a.u.) [16] and that of Ermler and McLean (-108.9930 a.u.) [17]. It is close to the TE of NHF given by Christiansen and McCullough (-108.9939 a.u.) [18];

2) TE for P₂ at R = 3.4978 a.u. (calculated R_e of [19]) given by atomic STF SCF set+five 3d, five 4f, and one 5g is -681.50176 which is a little lower than that of Mulliken and Liu (-681.50039 a.u.)[19]. It is expected that the value given in the present work is as close to the HF limit as that for N₂. The details on the molecular calculations on N₂ and P₂ will be given elsewhere [15].

4. Conclusions

The atomic STF HF wavefunctions from B to Ca have been investigated. The size of the STF sets generated are (5s5p), (9s5p), (9s8p), and (12s8p) for B to Ne, Na to Mg, Al to Ar, and K to Ca, respectively. The differences in the total energies (TE's) between the numerical HF(NHF) and present calculations are less than 4×10^{-6} from B to F and less than 1×10^{-5} from Ne to Ca. These atomic wavefunctions are considered to provide standard basis sets for benchmark moleclar HF calculations. Similar atomic STF HF wavefunctions for transition metal atoms have been elsewhere [20].

Using the STF's for the atomic HF wavefunctions, we have performed molecular SCF calculations on N_2 and P_2 . A large number of the polarization functions is required for reaching the HF limit.

The programs used were 'ALCHEMY'[21] and 'ATOM SCF' [22] where the open shell SCF method proposed by Roothaan and Bagus [1] is employed.

Acknowledgments. The present authors wish to express their sincere thanks to Dr. S. Huzinaga in University of Alberta (Canada) for useful and helpful discussions throughout the course of this work.

References

- 1. Roothaan CCJ, Bagus PS (1963) Method in computational physics, vol 2, p 47. Academic Press, New York
- 2. Clementi E (1965) Tables of atomic functions. Supplement to paper which appears in IBM Journal of Research and Development 9
- 3. Bagus PS, Gilbert TL, Roothaan CCJ (1972) Hartree-Fock wavefunctions of nominal accuracy for He through Rb⁺ calculated by the expansion method. Argonne National Laboratory 1
- 4. Huzinaga S (1971) Approximate atomic functions I. University of Alberta, Canada
- 5. Huzinaga S (1972) Approximate atomic functions II. University of Alberta, Canada
- 6. Huzinaga S (1973) Approximate atomic functions III. University of Alberta, Canada

Tables of accurate STF HF wavefunctions from B to Ca

- 7. a) Raffenetti RC (1973) J Chem Phys 59:5936
 - b) Raffenetti RC, Ruedenberg K (1973) Even-tempered representation of atomic self-consistent field wavefunctions. Ames Laboratory, USAEC, Iowa State University
- 8. Clementi E, Roetti C (1974) Atomic and nuclear data tables, 14:177. Academic Press, New York
- 9. Tatewaki H (1985) Chem Phys Lett 119:93
- 10 Fischer CF (1977) The Hartree-Fock method for atoms. Wiley, New York
- 11. Hay PJ (1977) J Chem Phys 66:4377
- 12. Schmidt MW, Ruedenberg K (1979) J Chem Phys 71:3951
- 13. Huzinaga S (1977) J Chem Phys 67:5974
- 14. Huzinaga S (1979) J Chem Phys 71:1984
- 15. Sekiya M, Tatewaki H: To be published in J Chem Phys
- 16. Cade PE, Sales KD, Wahl AC (1966) J Chem Phys 44:1973
- 17 Ermler WC, McLean AD (1980) J Chem Phys 73:2297
- 18. Christiansen PA, McCullough EA Jr (1977) J Chem Phys 67:1877
- 19. Mulliken RS, Liu B (1971) J Am Chem Soc 93:6735
- 20. Tatewaki H, Sekiya M (1986) J Chem Phys 85:5895
- 21. Bagus PS, Liu B, McLean D, Yoshimine M: Private communication
- 22. Huzinaga S: Private communication